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(The result is computed from the three problems with the highest scores.)

Points Problems

1.
4

2.
4

3.
6

4,
6

5.
8

6.
9

7.
9

A rectangle is dissected into several smaller rectangles. Is it possible that for each
pair of obtained rectangles, the line segment connecting their centers intersects
some third rectangle?

An infinite sequence of distinct positive integers is given. Each of its terms (except
the first one) is either the arithmetic mean or the geometric mean of two
neighboring terms. Is it necessary that in this sequence all terms starting from a
certain one are only arithmetic means or only geometric means of the neighboring
terms?

There is a counter in each square of a board 10x10. We may choose a diagonal
containing an even number of counters and remove any counter from it. What is
the maximal number of counters which can be removed from the board by these
operations?

Three planes dissect a parallelepiped into eight hexahedrons such that all of their
facets are quadrilaterals (each plane intersects two corresponding pairs of opposite
facets of the parallelepiped and does not intersect the remaining two facets). One
of the hexahedrons has a circumscribed sphere. Prove that each of these
hexahedrons has a circumscribed sphere.

Let (Z) be the number of ways that k objects can be chosen (regardless of order)

from a set of n objects. Prove that if positive integers k and [ are less than n, then

integers (Z) and (?) have a common divisor greater than 1.

An integer n > 1 is given. Two players mark points on a circle in turn: one of them
uses red color, and another one uses blue color. When n points of each color have
been marked, the game is over. Then each player finds the arc of maximal length
with ends of his color, which does not contain any other marked points. A player
wins if his arc is longer (if the lengths are equal, or both players have no such arcs,
the game has ended in a draw). Which player has a way to win for any action of his
opponent?

A cell of computer memory contains integer 6. The computer makes million steps:
at step n, it increases the integer in the cell by the greatest common divisor of this
integer and integer n. Prove that at each step, the computer increases the integer
in the cell either by 1 or by a prime number.



